
BG/L:
Tuning for One Node

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center

Outline

Single Core
Architecture (brief)

Memory/FPU (BLAS-1 vs. BLAS-3)

Programming Options
Data Structures

Dual Core
Why?
How?
When?

Single Core

Compute Node Structure of
BlueGene/L

Dual core
Dual FPU
Three-level cache
memory hierarchy
Non-coherent L1
cache

32 KB, 64-way, RR
L2 & L3 $’s coherent

Data Source Issue

CPU 1CPU 0

DDR

L3$ + wc

L2$ L2$

L1$ + wc L1$ + wc

RF RF

16 B/pclk
8 B/pclk

16/3 B/pclk
write-combinewc

Prefetching
L3-to-L2 and DDR-to-L3
“push”-based
prefetching mask
latency for stream
accesses
L2-to-L1 prefetching is
“pull”-based

Typical bottlenecks are
The DDR-to-L3 path
The L2-to-L1 path
Outstanding L1 misses

Bottleneck analysis

The Dual FMA Unit

Many special instructions
Alignment is vital
Instruction Level Parallelism

SIMD (Length 2 Vectors)

Important for the compiler
(or library developer) to
exploit this (4 FLOPS/cycle)

Memory: DAXPY
Vector scaling in the form:

y = a*x + y
BLAS Level 1 operation
Memory-bound kernel: three accesses to memory for
every computation:

Load of x[i] into p
Load of y[i] into q
Computation of r = a*p + q
Store of r into y[i]

There is no reuse of the elements loaded

DAXPY Bandwidth Utilization
Memory Bandwidth Utilization vs Vector Size for Different Implementations

of DAXPY

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

0 10000 20000 30000 40000 50000 60000 70000 80000 90000

Vector Size (bytes)

M
em

. B
an

dw
id

th
 (b

yt
es

/c
yc

le
)

Intrinsics
Assembly
Vanilla

5.3 bytes/cycle
(L3 – bandwidth)

16 bytes/cycle
(L1 – bandwidth)

STREAM Performance
BG/L SIngle-Node STREAM Performance (444 MHz)

28 July 2003

0

500

1000

1500

2000

2500

3000

0 500000 1000000 1500000 2000000

Vector size (8-byte elements)

Ba
nd

w
id

th
 (M

B/
s)

Tuned copy (MB/s)
Tuned scale (MB/s)
Tuned add (MB/s)
Tuned triad (MB/s)
OOB copy (MB/s)
OOB scale (MB/s)
OOB add (MB/s)
OOB triad (MB/s)

Out-of-box performance
is 50-65% of tuned
performance

Lessons learned in tuning
will be transferred to
compiler where possible

Comparison with
commodity
microprocessors is
competitive

Machine Frequency STREAM FP peak Balance

(MHz) (MB/s) (Mflop/s) (B/F)

Intel Xeon 3060 2900 6120 0.474

BG/L 444 2355 3552 0.663

BG/L 670 3579 5360 0.668

AMD Opteron 1800 3600 3600 1.000

DGEMV

Two basic operations:
y+=Ax
y+=ATx

Different optimizations for the
situations:

Data resides in L3 cache
Data resides in L1 cache

There is some reuse of vector elements
loaded

Memory Bandwidth Utilization for L3-optimal DGEMV kernel

0

1

2

3

4

5

6

7

8

9

10

0 50000 100000 150000 200000 250000 300000 350000 400000
Size (bytes)

m
em

. b
an

dw
id

th
 (b

yt
es

/c
yc

le
)

L3-optimal kernel
(1st running)

L1-optimal kernel
with intrinsics(1st
running)

L1 and L3-optimal DGEMV Bandwidth
Utilization

5.3 bytes/cycle
(L3 – bandwidth)

Two different kernels are
needed to deal with data
when:

-Data come out of L1

-Data come out of L3

Matrix Multiplication
Tiling for Registers (Analysis)

Latency tolerance (not bandwidth)
Take advantage of register count

Unroll by factor of two
24 register pairs
32 cycles per unrolled iteration
15 cycle load-to-use latency (L2 hit)

Could go to 3-way unroll if needed
32 register pairs
32 cycles per unrolled iteration
31 cycle load-to-use latency

F2

F1

M1

M2

8

8

16

16

Recursive Data Format

Mapping 2-D (Matrix) to
1-D (RAM)

C/Fortran do not map well

Space-Filling Curve
Approximation
Recursive Tiling
Allows us to efficiently
stream the data through
the memory hierarchy

Recursive Data Format

Mapping 2-D (Matrix) to
1-D (RAM)

C/Fortran do not map well

Space-Filling Curve
Approximation
Recursive Tiling
Allows us to efficiently
stream the data through
the memory hierarchy

Register Set

Blocks
L1 Cache

Blocks

L3 Cache
Blocks

Dual Register
Blocks

Programming Options
High Level

Compiler optimization to find SIMD
parallelism (XL/IBM Only)

Currently uses Larsen-Amarasinghe “Superword
Level Parallelism” algorithm (PLDI’00) to detect
and generate SIMD operations
Needs user input for specifying memory alignment
and lack of aliasing

__alignx assertion
disjoint pragma

Currently limited to parallel SIMD and memory
operations

Programming Options
Low Level

In-line assembly
User responsible for instruction selection, register
allocation, and scheduling

Dual FPU intrinsics
Complex data type used to model pair of double-precision
numbers that occupy a (P, S) register pair
User responsible for instruction selection
Compiler responsible for register allocation and
scheduling
Supported in C99 and Fortran (not in C++)

Dual Core

Dual Core

Why?
It’s a effortless way to double your
performance

Dual Core

Why?
It exploits the architecture and may
allow one to double the performance of
their code in some cases/regions

Dual Core

How?
grip=co_start(copro,func,args);

copro: opaque object
func: function pointer
args: Void ptr to arguments

Must be flushed on originator (core 0)
Must be invalidated on receiver (core 1)

co_join(copro,grip);

Dual Core
When …

Your computation is not L2 or above memory-
bound

Those elements are shared between cores
There is a good deal of (independent)
computation to perform

Process fork is relatively cheap, but not free
The amount of altered memory is small

Washing out the caches takes cycles
Blind device (4200 obs. cycles vs. 4096 opt. cycles)

The computation is “almost” L1 resident
Two cores: twice as much L1

Matrix Multiplication
Tiling for Dual Cores

Lack of coherence in
L1 dictates split of C
B “streams” through
L1: split it to control
stream traffic
Tile for

Dual core
L3
L1
Registers

A

B

C

120

120

120

Single-Node DGEMM
Performance at 92% of Peak

Single-node DGEMM (444 MHz)
18 July 2003

0

1

2

3

4

0 50 100 150 200 250

Matrix size (N)

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Single core (GF/s)
Dual core (GF/s)
Single core peak (GF/s)
Dual core peak (GF/s)

Near-perfect scalability (1.99×) going from single-core to
dual-core
Dual-core code delivers 92.27% of peak flops (8 flop/pclk)
Performance (as fraction of peak) competitive with that of
Power3 and Power4

92.27%

Points to consider

Code fusion can enable one to
Perform a data re-format and/or make effective
use of both cores for an operation

The architecture is very rich
Corner cases have to be handled
Can be very powerful
Helpful in understanding performance
Semi-esoteric improvements exist

Fine-grained L1 data cache control

What More Could We Want?
Open up the cache architecture more

It would be good if the library writer could specify that a
particular access would be a miss in L1, or a hit in L3, for
example
Expose more microarchitectural constraints to the compiler
Example: maximum number of L1 cache misses before stall

Better register scheduling algorithms
Currently, we have observed excessive spills when using
close to all 32 registers

Thanks to …

Leonardo Bachega: BLAS-1, performance results

Sid Chatterjee: Coprocessor, BLAS-1

Fred Gustavson, James Sexton: Data
structure investigations, design, sanity tests

BG/L:
Tuning for One Node

John A. Gunnels
Mathematical Sciences Dept.

IBM T. J. Watson Research Center

Performance Scales Linearly
with Clock Frequency

40
0

44
0

48
0

52
0

56
0

60
0

64
0 200000

900000
16000000

1000

2000

3000

4000

B
an

dw
id

th
 (M

B
/s

)

Frequency (MHz)
N (elts)

Speed test of STREAM COPY, 25 July 2003

40
0

44
0

48
0

52
0

56
0

60
0

64
0 16

96

1760

1

2

3

4

5

Performance
(GFlop/s)

Frequency (MHz)

N (elts)

Speed test of DGEMM, 25 July 2003

Measured performance of DGEMM and STREAM scale
linearly with frequency

DGEMM at 650 MHz delivers 4.79 Gflop/s
STREAM COPY at 670 MHz delivers 3579 MB/s

	BG/L: Tuning for One Node
	Outline
	Single Core
	Compute Node Structure of BlueGene/L
	Data Source Issue
	The Dual FMA Unit
	Memory: DAXPY
	DAXPY Bandwidth Utilization
	STREAM Performance
	DGEMV
	L1 and L3-optimal DGEMV Bandwidth Utilization
	Matrix MultiplicationTiling for Registers (Analysis)
	Recursive Data Format
	Recursive Data Format
	Programming OptionsHigh Level
	Programming OptionsLow Level
	Dual Core
	Dual Core
	Dual Core
	Dual Core
	Dual Core
	Matrix MultiplicationTiling for Dual Cores
	Single-Node DGEMM Performance at 92% of Peak
	Points to consider
	What More Could We Want?
	Thanks to …
	BG/L: Tuning for One Node
	Performance Scales Linearly with Clock Frequency

